Ohlin-Type Theorem for Convex Set-Valued Maps
نویسندگان
چکیده
منابع مشابه
Generalized Convex Set-Valued Maps
The aim of this paper is to show that under a mild semicontinuity assumption (the so-called segmentary epi-closedness), the cone-convex (resp. cone-quasiconvex) set-valued maps can be characterized in terms of weak cone-convexity (resp. weak cone-quasiconvexity), i.e. the notions obtained by replacing in the classical definitions the conditions of type ”for all x, y in the domain and for all t ...
متن کاملStrongly convex set-valued maps
We introduce the notion of strongly t-convex set-valued maps and present some properties of it. In particular, a Bernstein–Doetsch and Sierpiński-type theorems for strongly midconvex set-valued maps, as well as a Kuhn-type result are obtained. A representation of strongly t-convex set-valued maps in inner product spaces and a characterization of inner product spaces involving this representatio...
متن کاملContinuity Properties of Convex-type Set-valued Maps
K–convex, K–midconvex and (K,λ)–convex set–valued maps are considered. Several conditions implying the continuity of such maps are collected.
متن کاملCharacterization of (quasi)convex Set-valued Maps
The aim of this paper is to characterize in terms of classical (quasi)convexity of extended real-valued functions the set-valued maps which are K-(quasi)convex with respect to a convex cone K. In particular, we recover some known characterizations of K-(quasi)convex vector-valued functions, given by means of the polar cone of K.
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2020
ISSN: 1422-6383,1420-9012
DOI: 10.1007/s00025-020-01292-3